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MATRIX-VALUED PROBABILITY THEORY!
by
F. M. SIOSON

1. Introduction. The paper deals with the mathematical
foundations of a probability theory not hitherto considered in
the literature. It follows the axiomatic approach proposed by
A. N. Kolmogorov [2] in (real-valued) ordinary probability
theory. While this point of view may not be as intuitively
sound and logically satisfactgry as those proposed later by
Jerzy Los [3] and Yukiyosi Kawada ]1[, it nevertheless is the
most well-known if not the most elementary and easily dev-
eloped.

Like all mathematical theories, probability theory may be
founded on the theory of sets, which will consequently be
assumed here. Kolmogorov’s approach starts with a set U
-{called the population or sample space). Intuitively, the ele-
ments of U consist of all the possible outcomes of a random
experiment under consideration. A (random) event is a subset
of U, but, for reasons of both a practical and theoretical nature,
not every subset of U is, in general, an event. The fundamental
requirement, in any case, for any family of subsets of U to be
“an admissible family of events over U is that it forms a Boo-
lean algebra under the set-theoretical operations of union U,
inter-section (1, and complementation '. For our purposes, the
fcllowing is a sufficient requirement,.

DEFINITION 1. A family F of subsets of U is a Boolean
algebra (that is, a field of events over U) if and only if
(a) b, U« F,

1 Thig communicati%n is an excerpt from a body of results obtained
by author while working as a consultant to the Bureau of the Census
_and Statistics, Manila. The author is a Professor and Chairman of the
Mathematics Department at the Ateneo.
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(b) if X, YeF,thenX -~ YcFand X 1 YF.

The same family F is called a « — algebra (or a ¢ — field ot
events over U) if and only if in addition

oc
(c) X.eF(i=1,2,”,,n,_,,)impliesﬂXieF.
i 1=1 i

Clearly, if F is a field of events (¢ — field of events) over
U, then

(b.) X,YeFimpliessXUY=U—[(U—-X) N (U—=Y)]

)
eF, (¢) Xy eFfori=12 ...,n, ... implies U X, =
=1

0
U—[1 U—=X)]cF).

~ From matrix theory, recall that an n by n real symmetric
matrix A is said to be positive semi-definite if and only of for
every real row vector x we have xAx’ = 0. Let us denote
A = 0 when A is positive semi-definite and A = B if and only
A — B = 0. Denote by [0, I] the set of all positive semi-definite
n by n matrices A such that 0 = A = I, where I is the n by n
identity matrix. )

DEFINITION 2. A matrix-valud probability space is a
triple (U, F, P) consisting of a sample space U, a ¢ — field F
of events over U, and a set function P: F — [O, I] such that

(a) P (U) =1,

(b) P is countably additive, i.e. for any family of pairwise
>4}
disjoint subsets X ¢ F (i = 1,2, ..., n, ...), P (UX)) =
i i=1
=]
-§1P (X).

2. The Fundamental Theorem. We will need a couple of
Lemmata to prove the fundamental theorem.

LEMMA A. If F is a ¢ — field of events over U and Py;:
F — R is a real-valued bounded countably additive set func-
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tion, then there exists an element M ¢ F such that P;; (M) is
maximum (similarly for minimum).

Proof. We shall only prove the former result. The proof
of the parenthetical remark follows in a similar manner. Let
m =sup [P;; (X): X F].

First note that P;; (¢) =Pi; (¢ Uogp*U ... U U ...) =

Piy(¢) + P (¢U...UgU ...) = Pi (¢) + Py ()
2P;; (¢) and hence P;; (¢) =

Thus, clearly the number m is non-negative. Let X,

2 +v.y, X, ... be elements belonging to F such that lim

n> o

P,; (X,) = m. Since P;; is bounded, then all P,; (X,) are
finite. Also observe that

X

Xn—U (Xl_xk 1) U nXI:

k==n

,Where the sets occurring on the right are also pairwise disjoint.
Thus

© )
P (X)) = E Pn (Xy — Xi+1) + Py ( ﬂ Xy).

Therefore, m = lim P;; (X,) = P ( ﬂ Xk) + hm s Py

N> o N> o k—n

(X — Xity) =Py ( ﬂ X: ) + O. Observe that M = ﬁ
k1

k=1
Xy € F is the required set.

LEMMA B. If F is a 0 — field of events over U and P;;:

F— R is a real-valued bounded countably additive set func-

tion, then
Py (X) = P+; (X) — Py; (X)
for each X ¢ F, where
Pti; (X) =sup [P;; (Y): XD Y ¢F] and
P-; (X) = -inf [P;; (Y): X DY ¢ F] are both non-

-decreasing and countably additive set functions.

Proof. As in the proof of the previous Lemma, let X,, X,,
.., X, ... be a sequence of subsets of X belonging to F such
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that lim P;; (X,) = P+;; (X). Then for each n,

n-> op
Xn U (X'—Xn) =X
. and hence P;; (X,) + P;; (X —X,) =Py; (X). Thus, lim

N o
Py; (X —X,) =Py (X) — lim Pij (X,) = Py; (X)— .

N
sup [Py (Y): X DY eF] = in;o[Pi,- (X) —P;; (¥): X
DY eF] =inf [P (X—Y): XD X —YeF] = inf {P;;
(Z): XD ZeF] =Py (X).
" Therefore P;; (X) = lim Py; (X) 4+ lim P;; (X — X,) =

n— on N o
P+; (X) — P, (X) forall X ¢ F. .
If X, Y ¢ F such that X C Y, then clearly P+: (X)
cZ P+; (YY) and P (X) £ Py (Y) from the definition.
These mean that P+;; and P-;; are non-decreasing set functions.

To show that P+;; is countably additive, we first show
. finite additivity. Let X, Y ¢ F such that X 1 Y = ¢. Then

. foreach XUYDZe¢F,wehave Z = (X1 2Z) U (Y N Z)
_sothat P (Z) = P,(X N Z) + P, (Y N Z) = P+,(X) +
 P+,;(Y). Whence P+, (X UY) <P+,,(X) + P+,(Y). By de-
finition of P+;; there exist sets Z O X, ¢ F and Y D Y, ¢ F such
. that lim P;;(X,) = P+;(X) and lim P, (Y,) = P+,(Y).
Thus for n big enough X, N Y, == ¢ and P;;(X, U Y,) =
. Pi(X,). + Pi;(Y,). Hence lim P;(X, U Y,) = lim Pi;(X,)
+ lim P;;(Y.,) = P+;(X) + P+,(Y). Inasmuch as X, U
Y, C X UY, then P+,;(X) &+ P+,,(Y) = P+,(X UY).

0
Now, let S =,L_JISi ¢ F where S, S;, ..., S,, ... are pair-
wise disjoint sets also belonging to F. Then for SD Z ¢ F

?

[va]
"Z=U(S;NZ)andS; N ZC S, for all i. Hence P;i(Z) =

f==21 .

0 [~s] o0
S P(S, N Z) = SP+,(S;).This implies P+,;(S) =< s P+,;-
i=1

i=1 i=1

(Si). On the other hand S, US, U .. US, C S and since P+,

. is finitely additive and non-decreasing we have
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P+ij(81 U [ U-S“) = P‘*‘ij(sl) + « + P+ij(su) é P+ij(s)'

[+ ]

Whence X P+;; (S;) = P+;; (S). The final result follows
i=1

1

THEOREM. If (U, F, P) is a matrix-valued probability -
space and X ¢ F such that

Py, (X) P2 (X) P, (X)
P(X) — Py (X) P.:(X) P..(X)
Pu(X)  P.(X) ... Pu(X)
then
(i) (U, F, P;;) foreachi =1, 2, ..., n are ordinary real- -

valued probability spaces;

(ii) Py; (is%4j) foralli, j =1, 2, ..., n are finite countably -
additive set functions on F to [0,1] such that

P, = P+; — P-yj, where (U, F, P+;;) and (U, F, P-;;) are or- -
dinary real-valued probalility spaces.

Proof. Consider an arbitrary family X,, X,, ..., X,, ...
of pairwise dispoint sets in F. Then

e 0 © 0
(P; (UX)) =P(UXy) =3P(Xy) =3 (Pi(S)) =-
k=1 k=1 k=1 k=1

o0
(3P(S0).

Hence for all choices of i and j,
(o] 0

Pi;( U S = 3 Pyy(Si).
k=1 k=1

(i) This means that for each X ¢« F, 0 = P(X) =
(P; (X)) =1 = (dy;) whered;; = O for i ¢ j and d;; = 1.
Thus, O < P;; (X) and (dy; —P;; (X)) = Oso that 1 — Py,
(X)=OorP;,, (X) =1 Whence (U, F, P;;) is an ordinary
probability space for all i = 1, 2, ..., n.

(ii) For all i =< j, note that since '(Pi,- (X)) is positive
semi-definite, all its principal minors must be non-negative, .
that is to say,
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P, (X) P;; (X)
P (X) Py (X)

This implies that P?; (X) = P;; (X) P;; (X) =11 =1 or
—1=P; X) =+ 1

By Lemma A, there exists a set M ¢ F' such that P,; (M)
(which is less than or equal to 1) is maximum. For each
XeFset X, =XNTMand Xo =X — X, = X — M.

Then Pt+;; (X.) = O. For, suppose not, that is P+;; (X.)
> O. Then by the definition of the sup there exists a set
Y C S. with Y ¢ F such that P;; (Y) > O. Since Y [| M C
Se MM = ¢,then YU M ¢F and P;; (Y U M) = Py; (Y)
+ Py; (M) > P;; (M), contrary to the maximality of
P;; (M).

Similarly, P-;; (X,) = O, for, if not P; (X,) > O,
then by definition of the inf there exists a set Z C X; with.

Z ¢ F such that — P;; (Z) > O or Py; (Z) < O. Since
ZEXISM,then M—Z)UZ =M and

== Pii(X) Pji (X) — Pzij (X) 20-

Py (M —2Z) 4 Py (Z) = Py; (M) or
P, (M—2Z) =Py; (M) —Py; (Z2) > Py; (M),
again contrary to the maximality of P;; (M).
From the conclusions P-;; (X,) = O and P+; (X.) = O
of the two previous paragraphs, it follows then that
P+; (X) = P+; (X, U Xp) = P+5 (X)) + Py (Xp) =
P+ij (X]) and P'ij (X) = P—ij (X] U X_-) = P_ij (Xl) +
Py (Xo) = P‘ij (Xs).
From these it follows that
Py; (X,) = P+; (X)) — Py (X)) = P+ (X)) =
P+; (X) and Py; (X:) = Pty (Xa) — Py (Xy) = —
P-; (X). :
Therefore, for an arbitrary X ¢ F, we have
O = Py (X) =Py (X)) = | Py (X)) | =1
and
O=P,; X) = — Py (Xu) = | Pi; (X,) | = 1.
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These relations complete the proof that P+; and P-; for all
i 54 j are probability functions and P;; = P+,; — P-;.

To a mathematically trained reader, it is now almost
obvious that numerous standard results in ordinary real-valued
probability do extend to the case of matrix-valued probability.
For a complete exposition of these results please refer to the
monograph of the author which will be published by the
Bureau of the Census and Statistics{4].

3. Conditional Probability and Independence. For pur-
poses of illustration we shall here develop the notion of con-
ditional probability and prove the Bayes Theorem in matrix-
valued probability spaces.

DEFINITION 3. Events X, X., ..., X, ¢ F in a matrix-
valued probability space (U, F, ) are said to be independent
if and only if for any subset [Y,, ..., Y.} of [X,, ..., X,],
PY, N ... N Yy =P (Yy) ... P (Y,).

Observe that this definition implies that the product
appearing on the right side of the above equality is not only
defined but is also positive semi-definite and hence their factors
commute with one another. (Recall that two positive semi-
definite matrices have a positive semi-definite product if and
only if they commute.)

DEFINITION 4. If X, Y ¢ F of a matrix-valued probability
space (U, F, P) and P (X) is non-singular (i. e. positive defi-
nite) and commutes with P (X N Y), then the conditional
probability of Y given X is defined by

P(Y|X)=P(YNX)P (X)L

From Definition 4, note that if P (X) commutes with
P(Y N X), then P (X)! also commutes with P (Y N X)
and P (Y | X) is well-defined.

PROPOSITION. Let (U, F, P) be a matrix-valued pro-
bability space. Then

(1) for all Y, X ¢ F such that X C Y we have P (Y | X) =
I. In particular, P (X | X) = 1I;
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(2) if for all X ¢ F and every family Y,, Y., ..., Y., ...
of pairwise disjoint subsets in F the probabilities P (Y; | X)
are defined for eachi =1, 2, ..., n, ..., then
[a)
P(UY |X) = P(Y]IX)
i=1

(3) X, Y ¢ F are independent if and only if P (Y | X) =
P (Y);

(4) if UX, = U and P (Y |X,) are well-definied and
i=1
X NX; NY =4 (izt]j) for all i and j, then
[va)
P(Y) =3P (Y |X)P (X

Proof. (1) If X CY, then certainly P (Y N X) =P (X)

commutes with P (X) tand P (Y | X) =P (Y N X) P (X) !
=1

(2) P (Y, | X) =P (Y; N X) P (X) *foralli=1,
2, ..., n, ..., then remembering that (Y; N X) N

(Y;NX)y =Y NY; N X=¢forallisj, thean(Y |

X) =3P (Y NX)P(X) 1= (IP (Y, NX))P (X -

=P (U (¥ NX)IP X =P ((UY)NXP X -
[>o]

=P (U Y |X)

1

(3) If Y and X are independent, so that P(YNX) = P(Y)
P(X), then P(Y) = P(YNX)P(X)* = P(Y | X). Conversely,
if P(Y) = P(Y | X), then P(Y) = P(YNX)P(X)-! and there-
fore P(YNX) = P(Y)P(X).

(4) By hypothesis P(Y|X;) = P(YNX;))P(X;)? or
P(Y | X)P(X;) = P(YNX,) foralli=1,2,...,n,... Then
since Y,NY;NX = ¢ for i =< j,
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then
n [va] ¢s]
o P(Y | X)P(X;) = EIP(YﬂX)zP(U(YﬂXJ))zP(Y

i= i=}

N SXi) = P(YNU) = P(Y).
j==|

BAYES THEOREM. Under the hypothesis of (4) of the
previous proposition and if P(X, | Y) are defined, then

P(X,|Y) \P(Y|X (X)) = P(Y|X)P(Xy).

Proof. By hypothesis P(X; | Y) = P(X; 1 Y)P(Y)~ and
P(Y | Xi) = P(YNX)P(Xi)?. Thus, P(x | Y)P(Y) = P(Xq
NY) = P(Y | Xy)P(X,). By substituting the result of (4)
in the previous proposition, Bayes theorem is thus obtained.

REMARKS. A particular type of matrix-valued probability
space (U, F, P) for which P(Y | X) is invariably defined for
every X, Y ¢ F is one in which

_ ( Pi(X)  Pi(X) — PuAX)
P(X) = (P](X) — Pu(X) Pa(X>>

where P, and P, are any two ordinary probailities defined on
(U, F).

In this case observe that the product of any positive semi-
definite matrices of the above form is always positive semi-
definite, since any two of them commute.
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