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MATRIX-VALUED PROBABILITY THEORY·
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1. Introduction. The paper deals with the mathematical
foundations of a probability theory not hitherto considered in
the literature. It follows the axiomatic approach proposed by
A. N. Kolmogorov [2] in (real-valued) ordinary probability
theory. While this point of view may not be as intuitively
sound and logically satisfactory as those proposed later by
Jerzy Los [3] and Yukiyosi Kawada ]1[, it nevertheless is the
most well-known if not the most elementary and easily dev­
eloped.

Like all mathematical theories, probability theory may be
founded on the theory of sets, which will consequently be
assumed here. Kolmogorov's approach starts with a set V

. (called the population or sample space). Intuitively, the ele­
ments of V consist of all the possible outcomes of a random
experiment under consideration. A (random) event is a subset
of V, but, for reasons of both a practical and theoretical nature,
not every subset of U is, in general, an event. The fundamental
requirement, in any case, for any family of subsets of U to be

:an admissible family of events over U is that it forms a Boo­
lean algebra under the set-theoretical operations of union U,
inter-section n, and complementation'. For our purposes, the
following is a sufficient requirement.

DEFINITION 1. A family F of subsets of U is a Boolean
algebra (that is, a field of events over U) if and only if

(a) f/J, U e F,

o
1 This communication is an excerpt from a body of results obtained

by author while working as a consultant to the Bureau of the Census
and Statistics, Manila. The author is a Professor and Chairman of the

. Mathematics Department at the Ateneo.



The same family F is called a <T - algebra (or a (J - field ot
events over U) if and only if in addition
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(b) if X, Y e F, then X - Y € F and X n Y e F.

oc
(c) X € F (i = 1, 2, ... , n, ... ) implies n Xi e F.

i )=1 i

Clearly, if F is a field of events «(J - field of events) over
U, then

(b'.) X,Y€FimpliesXUY=U-[(U-X) n(U-Y)]

00

e F, (c') X, e F for i = 1, 2, ... , n, ... implies U Xi =
;=1

00

U-[r! (U-Xi)]€F).
;=1

From matrix theory, recall that an n by n real symmetric
matrix A is said to be positive semi-definite if and only of for
every real row vector x w.-e have xAx' > O. Let us denote
A > 0 when A is positive semi-definite and A > B if and only
A - B > O. Denote by [0, I] the set of all positive semi-definite
n by n matrices A such that O. < A < I, where I is the n by n
identity matrix.

DEFINITION 2. A matrix-valud probability space is a
triple (U, F, P) consisting of a sample space U, a IT - field F
of events over U, and a set function P: F ~ [0, I] such that

(a) P (U) = I,

(b) P is countably additive, i.e. for any family of pairwise

disjoint subsets X € F (i
00

1, 2, ... , n, ... ), P ( U Xi)
i=1

00
::-E P (X).

i=l i

2. The Fundamental Theorem. We will need a couple of
Lemmata to prove the fundamental theorem.

LEMMA A. If F is a <T - field of events over U and P 1j :

F ~ R is a real-valued bounded countably additive set func-



tion, then there exists an element M e F such that P ij (M) is
maximum (similarly for minimum).

Proof. We shall only prove the former result. The proof
of the parenthetical remark follows in a similar manner. Let
m = sup [Plj (X): X { F].

First note that P ij (cp) = P ij ( cp U cp·u ... u cp u ... )
P ij (cp) + Pu (q., U ... u cp u ... ) = P ij (cp) + P ij (cp)
2Pij (cp) and hence P ij (cp) = O.

Thus, clearly the number m is non-negative. Let Xl>
X~, ... , X n , ••• be elements belonging to F such that lim

n-+co

P ij (XII) = m. Since Pi j is bounded, then all PI j (Xn ) are
finite. Also observe that
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~
1Ili.i. 'ro'

co co
XII = U (XI' - X k +1 ) U n x,

k=1I k=1

where the sets occurring on the rightare also pairwise disjoint.

Tn,us

co
Therefore, m = lim P ij (XII) = P ( n Xl')

"-+co k=1

co+ lim ~ P i j

"-+co k="

co co
(XI' - X k +1 ) = P ij ( n XI' ) + O. Observe that M = n

k=1 k=1

'. X, e F is the required set.

LEMMA B. If F is a a - field of events over U and P ij:
F --+ R is a real-valued bounded countably additive set func­
tion, then

••

•

P,, (X) = P+ij (X) - P-Ij (X)

for each X c F, where
P+ij (X) = sup [Pi; (Y): X:;; Y e F] and

P-i; (X) = -inf [Pj, (Y): X =2. Y e F] are both non­

'decreasing and countably additive set functions.

Proof. As in the proof of the previous Lemma, let XI, X 2,

... , XII' ... be a sequence 'of subsets of X belonging to ,F such
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•

that lim P ij (X, ) = P+ij (X). Then for each n,
n~ 00

XII U (X - Xn) = X

and hence P ij (Xn) + P ij (X - Xn) = P jj (X). Thus, lim
n~ 00

P ij (X - XII) = Pi] (X) - lim Pij (Xn) = P ij (X)_
n~ 00

sup [P ij (Y): X 2 Y e F] = inf [P ij (X) -Pij (Y): X

:::> Y f F] = inf [P ij (X-Y): X ) X - Y e F] = inf [PI j- . -
(Z): X..? Z e F] = r-, (X).

Therefore P ij (X) = lim PI; (X) + lim Pi; (X - Xn) =
~oo ~oo •

P+;; (X) - p-i! (X) for all X f F.
If X, Y f F such that X ~ Y, then clearly P+" (X)

< P+;] (Y) and p-i! (X) < P-i1 (Y) from the definition.
These mean that P+;i and P-\i are non-decreasing set functions.

To show that P+jj is countably additive, we first show
. finite additivity. Let X, Y e F such that X n Y = cp. Then

for each X U Y 2 Z e F, we have Z = (X n Z) U (Y n Z)

so that Pii(Z) = Pij(X n Z) + Pij(Y (I Z) < P+ij(X) +
P+ij(Y). Whence P+ij(X U Y) < P+ij(X) + P+ij(Y). By de­

finition of P+ jj there exist sets Z 2 x, f F and Y ~ v, e F such

that lim Pij(Xn ) = P+ij(X) and lim Pij(Y,.) = P+1j(Y).
Thus for n big enough XII n Y, = cp and P ij (XII U YIl) =
Pjj(XIl). + Pij(YIl). Hence lim Pij(XIl U YIl) = lim Pij(X

1
.)

+ lim Pij(YII) = P+jj(X) + P+ij(Y). Inasmuch as XII U

YII ~ X U Y, then P+ij(X) + P+ij(Y) < P+ij(X U Y).

00

Now, let S = U S, f F where 8;, S~, ... , SIl, ... are pair-
i=1

wise disjoint sets also belonging to F. Then for S ~ Z f F,
00 -

Z = U (Si nZ) and S\ n Z C Si for all i. Hence Pii(Z) _
\=1 -

00 00 00

~ Pij(Si n Z) < :SP+ij(S;).ThisimpliesP+ij(S) <~P+ij"
i=1 i=1 i=1

(S;). On the other hand 8, U S~ U .. U SII ~ S and since P+ ij

~ is finitely additive and non-decreasing we have

•

,.
~I
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•

..

00

Whence s P+ij (8d < P+ij (8). The final result follows
i=1

THEOREM. If (U, F, P) is a matrix-valued probability
space and X e F such that

l
Pl1(X) P I2(X) ... PIli (X)]
P I2(X) P 22(X) . . . P 211 (X)

P(X) -
PIli (X)-_····_·P~:I-(j{)··········:·:-:-·······P~I::( X)

then

(i ) (U, F, Pid for each i = 1,2, ... , n are ordinary real- .-.
valued probability spaces;

(ii) F ij (i =1= j) for all i, j =1,2, ... , n are finite countably .
additive set functions on F to [0,1] such that

.• F ij = P+ij - P-1 j , where (U, F, P+ij) and (U, F, P-ij) are or- ­
dinary real-valued probalility spaces.

Proof. Consider an arbitrary family Xj, X 2, ... , Xu,
of pairwise dispoint sets in F. Then

•
00 00 00 00

<PI j ( U X k ) ) = P ( U x.: = ~ P (Xd = ~ (PI j ( 8 k ) )
k=1 k=1 k=l k=1

Hence for all choices of i and j,

'.

•

( i) This means that for each X e F, 0 < P (X) =
(P jj (X) ) < 1= (d i j ) where d., = 0 for i =1= j and d., = 1.
Thus, 0 < PII (X) and (d., - P ij (X) ) > 0 so that 1 - Pit
(X) < 0 or Pi i (X) < 1. Whence (U, F, Pi;) is an ordinary
probability space for all i = 1, 2, ... , n.

(ii) For all i =1= j, note that since (P 1 j (X) ) is positive
semi-definite, all its principal minors must be non-negative,
that is to say,
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I
P (X) r., (X) I
P;; (X) P

j j
(X) = P i i (X) P j j (~) - p2 j j (X) >0.

This implies that P::: j j (X) < Pi! (X) P jj (X) < 1.1 = 1 or
- 1 < P l j (X) < + 1.

By Lemma A, there exists a set M e F such that P l j (M)
(which is less than or equal to 1) is maximum. For each
X € F, set X, = X n M and X::: = X - X, = X - M.

Then P+i j (X:::) = O. For, suppose not, that is P+IJ (X:!)
> O. Then by the definition of the sup there exists a set
Y <;,. S::: with Y € F such that P i j (Y) > O. Since Y n M £:
S2 n M = cf>, then Y U M e F and r., (Y U M) = P l j (Y)
+ P l j (M) > P i j (M), contrary to the maximality of
P j j (M).

Similarly, P- i j (Xl) = 0, for, if not P- i j (XI) > 0,
then by definition of the inf there exists a set Z ~ X, with.

Z e F such that - P i j (Z) > 0 or P l j (Z) < O. Since
Z C x, C M, then (M - Z) U Z = M and

= =

•

•

-,

P i j (M - Z) + P i j (Z) = P i j (M) or
P i j (M - Z) = r., (M) -Pl j (Z) > r., (M),.

again contrary to the maximality of P,, (M).

From the conclusions P- i j (Xj ) = 0 and P+i j (X:::) = 0-
of the two previous paragraphs, it follows then that

P+l j (X) = P+i j ex, U X 2 ) = P+i j (Xl) + P+i j (X2 )

P+i j (Xd and P- i j (X) = P-i j ex, U X:!) = P- I j (Xd +
P-i j (X:::) = P-Ij (X:::).

From these it follows that

P i j (Xl) = P+i j (Xd - P- i j (XI) = P+i j (Xl) =
P+l j (X) and P i j (X:::) = P+l j (X:::) - P- j j (X2 )

P-i j (X).

Therefore, for an arbitrary X e F, we have

o < P+i j (X) = P i j (Xd = I P i j cx.: I < 1
and

•

•



•
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These relations complete the proof that P+j j and P' j j for all
i -:/= j are probability functions and P j j = P+ 1j - P-1 j •

To a mathematically trained reader, it is now almost
obvious that numerous standard results in ordinary real-valued
probability do extend to the case of matrix-valued probability.
For a complete exposition of these results please refer to the
monograph of the author which will be published by the
Bureau of the Census and Statistics[4].

• 3. Conditional Probability and Independence. For pur-
poses of illustration we shall here develop the notion of con­
ditional probability and prove the Bayes Theorem in matrix­
valued probability spaces.

DEFINITION 3. Events Xl> X:!, ... , XII e F in a matrix­
valued probability space (U, F, P) are said to be independent
if and only if for any subset [Y}, ... , YuJ of [X, , ... , X,J,
P (Yj n ... n Ym ) = P (Y1 ) •.• P (Ym ) .

• Observe that this definition implies that the product
appearing on the right side of the above equality is not only
defined but is also positive semi-definite and hence their factors
commute with one another. (Recall that two positive semi­
definite matrices have a positive semi-definite product if and
only if they commute.)

.. DEFINITION 4. If X, Y €F of a matrix-valued probability
space (U, F, P) and P (X) is non-singular (i. e. positive defi­
nite) and commutes with P (X n Y), then the conditional
probability of Y given X is defined by

P (Y I X) = P (Y n X) P (X) .1.

\ .

•

From Definition 4, note that if P (X) commutes with
P (Y n X), then P (X)·l also commutes with P (Y n X)
and P (Y I X) is well-defined.

PROPOSITION. Let (U, F, P) be a matrix-valued pro­
bability space. Then

(1) forallY,X€FsuchthatX~YwehaveP(Y IX)­

1. In particular, P (X I X) = I;
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•
(2) if for all X € F and every family YJ, Y~, ... , Y Il ,

of pairwise disjoint subsets in F the probabilities P (Y; I X)
are defined for each i = 1, 2, .. 0' n, 00 0' then

00 00

P ( U Y 1 I X ) = ~ P ( Y 1 I X)
i=1 i=1

(3) X, Y € F are independent if and only if P (Y I X)
P (Y);

(4) if UXi --...: U and P (Y IXi) are well-definied and •
i=l

X, n X, n Y = rp (i =1= j) for all i and j, then

00
P (Y) = s P (Y I x.: P (Xi)'

i=l

Proof. (1) If X ~ Y, then certainly P (Y n X) = P (X)

commutes with P (X) -1 and P (Y I X) = P (Y n X) P (X) .1

=1.

(2) If P (YI I X) = P (Y1 n X) P (X) -1 for all i = 1,
2, o. 0' n, 000' then remembering that (Y, n X) n

00
(Y j n X) = Yin Y j n X = rp for all i =1= j, then ~ P (Yi I

i=1
00 00

X) = ~ P (Y j n X) P (X) .J = ( ~ P rv. n X) ) P (X) .1 •
i=l i=1

00 00
= P ( U (Yi n X) ) P (X) ..1 = P ( ( U Yi) n X) P (X) _1

1=1 i='1

00
= P ( U v, I X).

i=1

(3) If Y and X are independent, so that p(YnX) = P(Y)
P(X), then P(Y) = p(YnX)p(X)-l = P(Y! X). Conversely,
if P(Y) = P(Y IX), then P(Y) = p(YnX)p(X)-1 and there­
fore P(Yfl X) = P(Y)P(X).

(4) By hypothesis P(Y Ix.: = P(Y0XdP(Xd-1 or
P(Y IXdP(Xd = P(Y{)X j ) for all i = 1, 2, . 00' n, ... Then
since Yi [IY, nx = rp for i =1= j,

..

e'
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•

if.)

nUX,) = p(ynU) = P(Y).
;=1

BAYES THEOREM. Under the hypothesis of (4) of the
previous proposition and if P (XI' IY) are defined, then

00

P(X1, IY) .~P(Y IXi)P(Xd = P(Y IXI,)P(XI.).
I~I

Proof. By hypothesis P(XI, I Y) = P(XI, n Y)P(Y)...J and
P(Y Ix.: = p(ynXk)p(Xk)-l1 . Thus, P(XI' IY)P(Y) = P(XI,
riY) = P(Y IXk)P(X\.). By substituting the result of (4)
in the previous proposition, Bayes theorem is thus obtained.

REMARKS. A particular type of matrix-valued probability
space (U, F, P) for which P(Y IX) is invariably defined for
every X, Y f F is one in which

P(X)

•

where PI and P~ are any two ordinary probailities defined on
(U, F).

In this case observe that the product of any positive semi­
definite matrices of the above form is always positive semi­
definite, since any two of them commute.

REFERENCES

[1] KA WADA, Yukiyosi: "Uber eine verbandstheoretische Beg'run­
dung del' Wahrscheinlichkeitsrechnung", Japanese Journal of Mathematic»,
18 (1943), pp. 887-972.

[2] KOLMOGOROV, A.N.: Foundations of the The01'y of Probubiliut,
2nd English Edition. New York: Chelsea Publishing Company, 1956.

[3] LOS, JERZY: "On the axiomatic treatment of probability",
Colloquium Muthematicusn, 3 (1955), pp. 125-137.

[4] SIOSON, F.M.: The Theory. of Operator-Valued Probabilities.
A research monograph to be published by the Bureau of Census and Sta­
tistics, Manila.


